JJG

中华人民共和国国家计量检定规程

JJG 796-92

高频驻波比电桥

1992 年 5 月 3 日批准

1993年5月1日实施

目 录

_	概述		(1)
=	技术	· ·要求······	(2)
Ξ		条件	
(-)	检定环境	(2)
(:	二)	检定用主要仪器设备	(2)
рц	检定	项目和检定方法	(3)
(-	一)	外观及工作正常性检查	(3)
(二.)	驻波比电桥方向性的检定	(4)
C	三)	电桥测试端口驻波比的检定	(5)
Ŧĭ.	检定	结果的处理和检定周期	(6)
附录	Ę		•
群	禄 1	高频驻波比电桥的总体检定	(7)
酥	禄 2	驻波比电桥检定结果表格	(9)

高频驻波比电桥检定规程

Verification Regulation of RF SWR bridge

本检定规程经国家技术 监督局于1992年5月3日批准,并自1993年5月1日起施行。

归口单位。 中国计量科学研究院

起草单位。 中国计量科学研究院 南京无线电仪器厂

本规程技术条文由起草单位负责解释。

本规程主要起草人:

李 油 (中国计量科学研究院)

江文诚 (南京无线电仪器厂)

參加起草人:

王金凤 (中国计量科学研究院)

高频驻波比电桥检定规程

本规程适用于新制造、使用中或修理后, 频率 范围 为 1~1 300 MHz 的高频驻波比电桥(又称反射计电桥或反射桥路)的检定。

- 1 高频驻波比电桥是一种使用方便、应用广泛的高频标量阻抗 测量仪器,它与扫频信号源及显示器连在一起,组成扫频驻波比测量 系统,可在工作频段内直接显示被测件驻波比的频率特性。目前,高 频驻波比电桥广泛用于广播、电视及通信设备的测量与调试。
 - 2 驻波比电桥的原理如图 1 所示。它是一个具有四个桥 臂 的惠

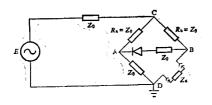


图 1

斯登电桥,两个等于传输线特性阻抗(50 Ω 或 75 Ω)的射频电阻 R_0 和 R_0 构成电桥的比率臂,其余两个桥臂。一个为参考端口,接 标 准匹配负载 Z_0 ,另一为腾试端口,接被测负载 Z_x 。 RF 信号 从 电 标的一个对角线 CD 加入,另一对角线 AB 经晶体检波器测出电压。可以证明,驻波比电桥的输出电压正比于被测负载的反射系数,即

$$E_{AB} = \frac{|E(Z_x - Z_0)|}{8(Z_x + Z_0)} = \frac{E}{8} |\Gamma_x|$$
 (1)

式中 Γ_x ——被测负载阻抗 Z_x 相对于 Z_0 呈现的反射系数绝对值。

二技术要求

- 3 频率范围: 1~1 300 MHz;
- 4 特性阻抗: 50 Ω 或 75 Ω;
- 5 方向性: ≥29~40 dB;
- 6 测试端口驻波比, 1,25~2,
- 7 测试端连接器形式, L16.

三检定条件

(一) 检定环境

- 8 环境温度, 10~35℃,
- 9 相对湿度: <80%;
- 10 供电电压 220 V±10%, 50 Hz±1%, x
- 11 周围环境无强磁**场干扰和影响检定系 统 正 常 工**作的机械振动。

(二) 检定用主要仪器设备

- 12 采用点频方式检定驻波比电桥方向性时所用仪器设备
- 12.1 信号发生器
- 12.1.1 頻率范围, 1~1 300 MHz 或根据被检电桥工作频率范围选择。
 - 12.1.2 频率稳定度。<1×10=8/min.
 - 12.1.3 输出功率: >10 mW.
 - 12.2 同轴标准匹配负载
 - 12.2.1 特性阻抗, 50 ♀或 75 ♀.
 - 12.2.2 驻波比5≤1.01.
 - 12.3 标准衰减器
 - 12.3.1 衰减范围: 0~60 dB;

0~60 dB (步进 10 dB),

0~10 dB (步进 1 dB)。

12.3.2 衰减准确度

DC~500 MHz; ±0.2 dB; 500~1000 MHz; ±0.6 dB.

- 12.4 冼频放大器
- 13 采用扫频方式检定驻波比电桥方向性时所用仪器设备
- 13.1 同轴标准匹配负载
- 13.1.1 特性阻抗, 50 0 或 75 0.
- 13.1.2 驻波比 S≤1.02.
- 13.1.3 连接器形式根据被检驻波比电桥而定。
- 13.2 扫颜信号发生器
- 13.2.1 扫频范围: 1~1 300 MHz, 或根据被检驻 波比电桥工作频率范围选择。
 - 13.2.2 输出平坦度≤±0.5 dB (连同检波器)。
 - 13.2.3 输出电压>0.5 V.
- 13.2.4 衰減 准确 度,不大于±(0,2+0,01 A)dB, A为衰减读数.
 - 13.3 显示器
 - 13.3.1 水平及垂直偏转线性<1:1.25.
 - 13.3.2 灵敏度≤0.2 mV/cm.
 - 14 检定电桥测试端口驻波比时还应增加以下设备
 - 14.1 标准驻波比电桥
 - 14.1.1 方向性≥40 dB.
 - 14.1.2 测试端口驻波比≤1.2.
 - 15 同轴连接器

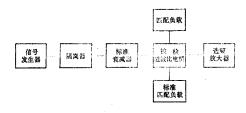
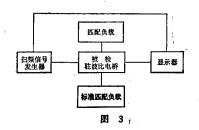
四 检定项目和检定方法

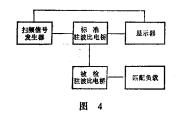
- (一) 外观及工作正常性检查
- 16 被检驻波比电桥不得有影响其正常工作的机械损伤,电桥外 壳应盖紧。
 - 17 被检驻波比电桥各端口的同轴连接器应完好无损。

- 18 送检时应带有该驻波比电桥的说明书及上次检定证书。
- (二) 驻波比电桥方向性的检定
- 19 点频方式
- 19.1 驻波比电桥等效方向性定义为

$$10 \lg \frac{P_{xy}(短路器)}{P_{xy}(匹配负载)}$$
 (dB) (2)

19.2 按图 2 连接检定装置,接通各仪器电源,预点 半小时后, 参照使用说明书调整好信号发生器。


图 2

- 19.3 将信号发生器调到所需检定频率点,被检驻波比电桥的测试 端口接标准匹配负载 (该负载必须经有关计量部门 检定合格),调整 标准衰减器衰减量及选频放大器增益,使选放指针指到一适当位置a, 记下此时标准衰减器衰减量 A₁ (dB).
- 19.4 增加标准衰减器衰减量至 30 dB 以上, 然后取下 测试端标准匹配负载, 使电桥测试端呈开路状态, 再调整标准 衰 減 器的衰减量, 使选频放大器指针回到 a 位置, 再次记下标准衰 減器 的衰减量 A₂(dB)。
 - 19.5 被检驻波比电桥在该频率点上的方向性为 (A, A,)dB。
- 19.6 改变信号发生器频率, 每隔 100 MHz 依次按上述方法检定各频率点电桥方向性, 检定结果参照附录 2 表 1 填写。
 - 19.7 带有两个测试端口的驻波比电桥,其方向性应分别检定。

- 20 扫频方式
- 20.1 本方法适用于检定<35 dB 方向性的驻波比电桥。
- 20.2 按图 3 连接检定装置,接通扫频信号发生器及显示器电源, 将扫频信号发生器调到1 000 MHz 频率点上, 预热半小时后参照说明 书调整好仪器。

- 20.3 被检驻波比电桥的测试端口接标准匹配负载(该负载必须经有关计量部门检定合格),调节扫频信号发生器输出衰减器及显示器灵敏度,使显示器扫描线相对零线1cm,记下此时的衰减值A₁(dB)和显示器扫描线刻度格数。
- 20.4 取下测试端标准匹配负载,使电桥测试端呈开路 状态,增加扫频信号发生器上衰减器的衰减量,直至显示器扫描线回到原刻度格数的位置。记下衰减器衰减值 A。(dB)。
- 20.5 被检驻波比电桥方向性为 $(A_2 A_1)$ dB。 按附录 2 表 2 给出检定结果。
 - 20.6 带有两个测试端口的驻波比电桥,其方向性应分别检定。
 - (三) 电桥测试端口驻波比的检定
- 27 按图 4 连接检定装置,用连接器将被检驻波比电桥测试端口接到标准驻波比电桥测试端口上,接通电源预热半小时。
- 28 调节扫频信号发生器输出衰减器及显示器灵敏度,使显示器 扫描线相对零线1cm 左右,记下此时衰减 A₁(dB) 和显 示器扫描线

- 29 取下被检驻波比电桥及连接器,使标准驻波比电桥测试端口 量开路状态,增加扫频信号发生器上输出衰减器衰减量,直至显示器 扫描线回到原刻度格数的位置。记下此时衰减值 A₁(dB)。
 - 30 被检驻波比电桥测试端口驻波比为

$$S = \frac{1 + 10^{-(A_2 - A_1)/26}}{1 - 10^{-(A_2 - A_1)/26}}$$
 (3)

式中, $(A_1 - A_1)$ dB 为回波损失,亦可由回波损失查表求出相应 脏波比 S_2

- 31 未给出该项技术指标的驻波比电桥。此项可以不检。
- 32 本规程不把总体检定作为必需的检定项目,需要总体检定时,可参照附录 1 进行。

五 检定结果的处理和检定周期

- 33 经检定合格的高频驻波比电桥发给检定证书,检定不合格的 发给检定结果通知书,并注明不合格的项目。
- 34 高頻驻波比电桥的检定周期一般为1年。修理后的驻波比电桥应重新送检。

附 录

附聚 1

高辐驻波比电桥的总体检定

- 1 本方法适用于通过总体检定确定驻波比电桥 检定装置的总误差,包括信号源、衰减器及显示器等引入的误差。
- 2 按图 1 连接检定装置,接通扫频信号发生器和显示器电源,分别参照说明书调整好上述仪器,预热半小时。驻波比电桥测试端接S=1,1 (该负载器经有关计量部门检定 合格)的同轴标准失配负载。

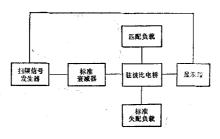


图 1

- 3 反复调节扫频信号发生器输出衰减器和显示 器 灵敏度,记下此时衰减器的衰减值 A_1 (dB) 和在 P_1 频率点上显 示器扫描线刻度格数。
- 4 取下电桥测试端标准失配负载,使测试端呈开路状态,增加扫频信号发生器输出衰减器衰减量,直至显示器扫描线 回到 F, 频率点上原刻度格数位置,记下此时衰减器衰减值 A₄(dB)。

5 用被检驻波比电桥测得的标准失配负载在F₁ 频率点反射系数 **僚**为

$$|\Gamma_1| = 10^{-(A_2 - A_1)/26} \tag{1}$$

式中, $A_1 - A_1$ 为被检驻波比电桥的回波损失,也可由回波损失 套表求出反射系数[Γ_1]。

- 6 找出用上一级标准检定过的S=1.1 标准失配 负 载 的检定结果,并查出对应 F_1 频率点上的反射系数模 $|F_0|$ 。
 - 7 按下式计算该频率点上反射系数模误差。

$$\Delta |\Gamma_1| = \pm ||\Gamma_1| - |\Gamma_0|| \tag{2}$$

- 8 检定频率点可根据用户要求选定。
- 9 用上述方法可分别选用 S=1.2、S=1.3、S=1.4、S=1.5、 S=2、S=3 的标准失配负载进行总体检定。

附录 2

驻波比电桥检定结果表格

42 ·		温观月式程正组果							
项目	频率 (MHz)	100	200	300	400	500	600	•••	1 300
-114	地口 1								
方向性	端口 2								
测试统	驻波比								
表 2		ŧ	頻方式	检定线	果				
	频率范围								
项目·									
	増口 1								
方向性	増口 2								
洲试端	驻波比								

JJG 796-92 勘误表

条款	误	Ē			
20.2	调到 1000MHz 频率点上,	调到所需频率范围,			
28	和显示器扫描线	和显示器扫描线刻度格数,			

27~34条编号有误, 应依次改为 21~28条,